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J .  Phys. A: Math. Gen. 21 (1988) L889-L892. Printed in the U K  

LETTER TO THE EDITOR 

Correspondence between Berry’s phase and Lewis’s phase for 
quadratic Hamiltonians 

Daniel A Morales 
Facultad de Ciencias, Universidad de Los Andes, Departamento de Quimica, Grupo de 
Quimica Tebrica, MCrida 5101, Venezuela 

Received 30 June 1988 

Abstract. We show the existence of a relation between Berry’s phase and Lewis’s phase 
for the case of quadratic Hamiltonians. 

The holonomic effect in quantum mechanics known as Berry’s phase has received 
considerable attention recently (Berry 1984). It occurs when the time-dependent 
parameters of a system which evolves adiabatically in time execute a complete loop 
in parameter space. The wavefunction of the system then acquires, in addition to the 
dynamical phase exp( -i h-’ E. ( t )  dt), a geometrical phase factor given by 

as the parameters are slowly varied along a closed loop c in the parameter space X (  t )  
in time T. lU,(X( t ) ) )  are the eigenstates of the instantaneous Hamiltonian H ( X (  t ) ) .  

Berry’s phase has a classical analogue as an angle shift acquired by the system 
when its dynamical variables are expressed in action-angle variables. This angle shift 
has become known as Hannay’s angle (Hannay 1985, Berry 1985). 

Several model systems have been chosen for calculating Berry’s phase and its 
classical analogue. One of these systems is the generalised simple harmonic oscillator, 
whose Hamiltonian is given by (Berry 1985, Hannay 1985) 

(2) 

the slowly varying parameters being X (  t), Y( t )  and Z (  t). 
In this letter we would like to show that, since (1) can be transformed to the 

Hamiltonian of a harmonic oscillator with time-dependent frequency, there exists a 
connection between Berry’s phase for the system with Hamiltonian (2) and Lewis’s 
phase for the time-dependent harmonic oscillator (Lewis and Riesenfeld 1969). Inter- 
estingly enough, the phase we shall obtain is exact even though the system does not 
evolve adiabatically in time and becomes equal to Berry’s result in the adiabatic limit. 

Lewis and Riesenfeld (1969) showed that for a quantal system characterised by a 
time-dependent Hamiltonian H (  t )  and a Hermitian invariant I( t) ,  the general solution 
of the time-dependent Schrodinger equation 

H ( P ,  q, t )  = S(X( t )  q2 + 2 Y( t h P  + Z( t ) P 2 )  
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where the eigenvalues are time independent, the coefficients C, are constants and the 
phases a,(?) are obtained from the equation 

hda,(  t ) /dt  = (Y,,liha/at - H(t)IT,). (6) 

Using this result Lewis and Riesenfeld (1969) obtained quantal solutions for a harmonic 
oscillator with time-dependent frequency characterised by the Hamiltonian 

H ( t )  =fp2+in’(t)q2 ( 7 )  

q+n2( t ) q  = 0 (8)  

and the classical equation of motion 

where the dots indicate time differentiation. The matrix elements necessary to evaluate 
Lewis’s phase are given by (Lewis and Riesenfeld 1969) 

where p ( t )  is a c-number quantity satisfying the equation 

p+n2(tlp = i lp3 .  (10) 
Substituting (9) in (6) and integrating we obtain 

a,(?)= - ( n + t )  \o‘dt’/p2(t’). 

Our aim now is to show that, using (9a) or ( l l ) ,  we can obtain Berry’s phase and 
Hannay’s angle for the system with Hamiltonian (2). For this system the frequency, 
which can be obtained from the Hamiltonian expressed in action-angle variables, is 
given by 

(12) w = a H ( I ,  X ( t ) ,  Y ( t ) ,  2 ( t ) ) / a 1  = ( X Z -  Y2)I’2. 

From (2) one can obtain equations of motion for q and p and eliminating p we get 
the Newtonian equation of motion for q as 

q - (Z/z)q + [ xz - Y 2  + (ZY - YZ)/Z]q = 0. (13)  
The term in q can be eliminated by introducing a new coordinate Q( t )  given by (Berry 
1985) 

q ( t )  = [z(t)I’”Q(t). 

Substituting (14) in (13) one gets 

0 + { X Z  - Y 2  + (ZY - YZ) /Z  + [+(i/Z - Z2/Z2) - $( Z / Z ) 2 ] } Q  = 0 (15)  
which corresponds to the equations of motion of an oscillator with parametrically 
forced frequency. Berry finds Hannay’s angle A 0  by the W K B  method of quantum 
mechanics. We shall obtain it by means of (9a) or ( 1 1 ) .  
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Comparing (8) with (15) we see that we can define $I2( t )  as 

n2(t) = XZ - Y 2 +  ( Z Y  - Y Z ) / Z +  [ a ( Z / Z  - Z 2 / Z 2 )  -$(Z/2)2]. (16) 

With this connection and employing (1) and ( s a )  we get 

yn(  C )  = -$( n + f) ( p b  - b2)  d t  (17)  JOT 
where p ( t )  is the solution of (10) with f l z ( r )  given by (16). It is important to point 
out that (17) is exact even when the system does not evolve slowly in time. 

In order to compare with Berry’s results we shall take the adiabatic limit of our 
problem. In this respect we define an adiabaticity parameter E and a ‘slow time’ 
variable 7 

x E x ( 7 )  7 ’ E t  (18) 
in terms of which n’(7) becomes 

f12(7)=&-2{XZ- Y2+ E(Z’Y- y ’ z ) / z + & 2 [ t ( Z ’ / Z ) ’ - $ ( Z ’ / Z ) 2 ] }  (19) 
where the primes indicate differentiation with respect to 7. It has been shown by Lewis 
(1968) that in the adiabatic limit (19) can be solved by a series of powers in E with 
the zeroth-order term given by 

po = P I 2 (  7). (20) 
If we substitute this expression for p and its time derivatives in (17) we could obtain 
Berry’s phase in the adiabatic limit. However, it is easier to calculate Lewis’s phase 
first and then subtract the dynamical term - f ~ - ~ ( ~ , , ~ H ( t ) ~ ~ , , ) ,  Substituting (19) and 
(20) in (11) we get 

The first term on the right-hand side is the dynamical phase and the second- and 
higher-order terms are associated with Berry’s phase. Thus we can write Berry’s phase 
as 

Hannay’s angle is obtained using Berry’s correspondence principle (Berry 1985, 
Hannay 1985) 

A 0  = -a y , / a n  

as 

(ZY - YZ)  
Z ( X 2 -  Y2)’/2dr  A 0  =- JOT 

which is the same result obtained by Berry (1985). 
We have thus proved that, if a quadratic time-dependent Hamiltonian can be 

transformed to the form given by (7), then Lewis’s phase can be used to evaluate 
Berry’s phase and Hannay’s angle. Even though we discussed a particular case it is 
known that Lewis’s theory for time-dependent systems is general and our work shows 
that more work will have to be done on the connection between Berry’s phase and the 
general theory of time-dependent constants of the motion. 
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